Anomalous Temperature Dependence of the ⁹⁹Tc Quadrupole Coupling and Disordering of Cesium Positions in CsTcO₄

V. P. Tarasov, G. A. Kirakosyan^a, and K. E. German^b

^a Institute of General and Inorganic Chemistry Acad. Sci. USSR

^b Institute of Physical Chemistry Acad. Sci. USSR

Z. Naturforsch. 47a, 325-329 (1992); received July 26, 1991

A 99 Tc and 133 Cs solid-state NMR study of polycrystalline CsTcO₄ at a field of 7.04 T and temperatures from 90 to 430 K revealed first-order quadrupole effects. 99 Tc quadrupole coupling constant, C_{O} , shows anomalous positive temperature coefficients and decreases from 2.0 MHz at 430 K to 0.45 MHz at 90 K. The asymmetry parameter, η (99 Tc), is zero at 430 K and at 210 K. The high-temperature minimum of η is associated with a phase transition from orthorhombic to tetragonal and the second minimum reflects an orientational change of the principal axes q_{xx} and q_{yy} of the EFG-tensor.

the EFG-tensor. The ¹³³Cs NMR spectra are characterised by a superposition of the two powder multiplets from the first-order couplings which arise from magnetically and crystallographically nonequivalent cesium sites, Cs (1) and Cs (2); the population ratio of Cs (2) and Cs (1), p_2/p_1 , varies from 2.0 at 120 K to 6.5 at 373 K. The nonequivalence and population changes are attributed to the temperature change of the crystal field potential in the vicinity of the cations.

Key words: Technetium, Cesium, Solid State NMR, Quadrupole Effects, Phase Transitions.

Introduction

Cesium pertechnetate, $CsTcO_4$, crystallizes at room temperature in a orthorhombic form with the space group Pnma (D_{2h}^{16}); it forms a pseudoscheelite type lattice with the unit cell parameters a=5.726, b=5.922, and c=14.36 Å [1, 2]. The TcO_4^- anions and the Cs^+ cations occupy positions with local symmetry C_s [2]. ¹³³Cs NMR data for $CsMnO_4$ and $CsReO_4$, the structural analogs of cesium pertechnetate, have revealed magnetic nonequivalence of the Cs^+ cations [3].

According to DTA and X-ray data at (389 ± 5) K, CsTcO₄ experiences a first order phase transition from orthorhombic to a tetragonal form with the cell parameters a = 5.898, c = 14.38 Å, which is accompanied by the expansion of the cell volume [4].

The quadrupole coupling constant (QCC), C_Q , and the asymmetry parameter of the electric field gradient (EFG), η , for the ⁹⁹Tc nuclei in CsTcO₄ are direct indicators of the crystal symmetry since C_Q and η are

Reprints requests to Dr. V. P. Tarasov, Institute of General & Inorganic Chemistry, Ac. Sci. USSR, Leninskii, Pr. 31, 117907 Moscow, USSR.

Presented at the XIth International Symposium on Nuclear Quadrupole Resonance Spectroscopy, London, United Kingdom, July 15–19, 1991.

depended on the electronic environment in the crystal. Earlier we have measured by ^{99}Tc solid-state NMR first order quadrupole effects in CsTcO₄ with C_Q and η equal to 1.25 (5) MHz and 0.22 (5), respectively, at 293 K [5]. The values obtained for the EFG and η are within the range of values expected for a packing-induced effect which dominates the temperature behaviour of the EFG-tensor.

We have shown that there is a linear dependence of $|e \, q_{zz}|$ on the reciprocal unit cell volume, V, for the alkali metal (Na, K, Rb) and ammonium pertechnetates with scheelite structure [5, 6]:

$$(e \, q)_{\text{exp}}(^{99}\text{Tc}) = a \, V^{-1} + b, \quad (a > 0).$$
 (1)

This dependence gives evidence of the same signs of the valence $(q_{\rm val})$ and lattice $(q_{\rm lat})$ contributions to the ⁹⁹Tc EFG in the pertechnetates [6].

To clear specific features of the EFG in the cationic and anionic positions of CsTcO₄, the temperature dependences of the magnetic resonance parameters of the ⁹⁹Tc and ¹³³Cs nuclei will discussed.

Experimental

Cesium pertechnetate was synthesized by the interaction of CsNO₃ ND₄TcO₄ in aqueous solution. The

0932-0784 / 92 / 0100-0325 \$ 01.30/0. - Please order a reprint rather than making your own copy.

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

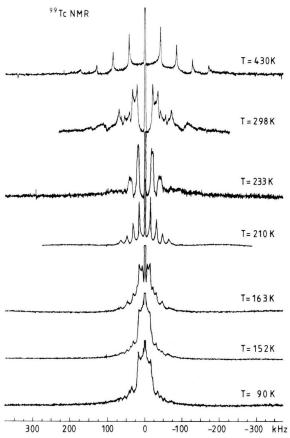


Fig. 1. 99 Tc NMR spectra (67.5 MHz) of polycrystalline CsTcO₄ with first order quadrupole splitting at different temperatures; sweep range: spectral width = 1 MHz; number of scans = 100.

individuality of the compound was proved by chemical and X-ray phase analysis. The sample of CsTcO₄ was a white polycrystalline powder with a dispersity Φ 30–50 μ m. DTA revealed a weak exothermal effect at 390 K.

The 99 Tc (67.5 MHz) and 133 Cs (39.8 MHz) NMR spectra have been recorded on a Bruker MSL-300 spectrometer at a field $B_0 = 7.04$ T in the temperature range 90-430 K. A one-pulse sequence with a variable dead time (5-7 μ s) was used for the excitation of a spin system; the pulse width was 1 μ s with 5 s delays.

The isotropic chemical shifts have been determined relative to resonances of aqueous solutions of CsBr (0.5 M) and NH₄TcO₄ (0.1 M). Temperature dependent experiments were carried out using a Bruker B-VT-1000 thermostat with a temperature tolerance $\Delta T \pm 1 K$.

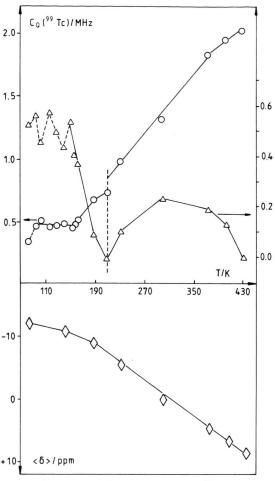


Fig. 2. Temperature dependence of the $^{99}{\rm Tc}$ QCC, $C_Q = e^2 \, q \, Q/h$, (o), asymmetry parameter, η (a), and chemical shifts, δ (\diamond) for $^{99}{\rm Tc}$ NMR in CsTcO4.

Results and Discussion

99 Tc NMR

Figure 1 shows the temperature dependence of the 99 Tc NMR line shape of CsTcO₄, which is dominated by first-order quadrupole effects. The spectra consist of nine lines, the satellites having a complicated shape due to a nonzero asymmetry parameter, η . The central component ($-1/2 \leftrightarrow 1/2$ transition) remains symmetrical even in the low-field experiments ($B_0 = 1.4 - 2.1$). Hence, second-order quadrupole coupling and chemical shift anisotropy seem to be negligible in the case of 99 Tc NMR for CsTcO₄. The chemical shift of the 99 Tc NMR varies insignificantly over the whole temperature range (from -10 to 10 ppm).

The first-order NMR powder pattern is characterized by three specific points on the frequency scale: $v_{\rm sg}$ (singularity), $v_{\rm sh}$ (shoulder) and $v_{\rm st}$ (step). Using the relations between v_Q , η , $\Delta v_{\rm sg}$, $\Delta v_{\rm sh}$, and $\Delta v_{\rm st}$ from [7], we have constructed a set of theoretical line shapes (histogram) for I=9/2. The values of v_Q and η have been determined by comparison of the calculated and experimental spectra. The temperature dependences of C_Q and η for the 99 Tc nuclei are shown in Figure 2.

The C_Q (99Tc) temperature dependence is anomalous with a positive temperature coefficient

$$\Delta C_o/\Delta T \simeq 6 \,\mathrm{kHz\cdot K^{-1}}$$
.

The asymmetry parameter, η , becomes zero at 210 K and at 430 K. The realization of axial symmetry of the ⁹⁹Tc EFG tensor at 430 K reflects the phase transition from orthorhombic to tetragonal. The value $C_Q = 2.0$ MHz at 430 K agrees with the value obtained by extrapolation of the linear dependence (1) for the pertechnetates with scheelite structure.

Since no phase transitions have been detected in the low temperature range, the zero value of η at 210 K seems to arise from a displacement of the ⁹⁹Tc EFG tensor axes. The ⁹⁹Tc EFG tensor components at different temperatures have been determined except for the sign, on assuming that the principal axes system remained unaltered for the whole temperature range measured, by

$$\sum_{i=x,y,z} q_{ii} = 0,$$

$$\eta = \left| \frac{q_{xx} - q_{yy}}{q_{zz}} \right|,$$

$$q_{zz} = \frac{h C_Q}{e Q (1 - \gamma)}$$

$$= 0.4137 \frac{C_Q (\text{MHz})}{Q (\text{barn}) (1 - \gamma)} [10^{20} \text{ Vm}^{-2}],$$

$$Q = 0.5 \text{ barn}, \quad (1 - \gamma) = 6.$$
(2)

Figure 3 shows that the $q_{xx}(T)$ and $q_{yy}(T)$ curves cross at 210 K. Hence, the break in $\eta(T)$ at 210 K is a result of the reversing of the submodule difference sign in (2). Slight oscillations of $\eta(T)$ below 150 K (Fig. 2) seem to be a result of the variation of the $q_{ij}(^{99}\text{Tc})$ absolute values due to the charge redistribution on the oxygen and technetium atoms in the TcO_4^- -anion [5].

The reported results have shown that in the case of CsTcO₄ the absolute values of the ⁹⁹Tc EFG tensor

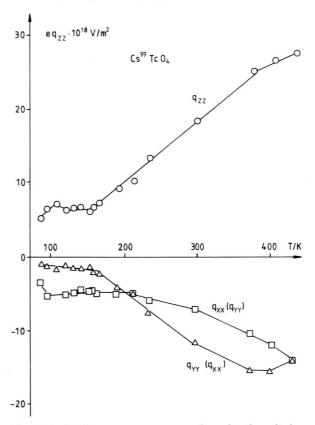


Fig. 3. The EFG tensor components at the technetium site in $CsTcO_4$ vs. temperature.

components, $|q_{ij}(T)|$, diminish with diminishing temperature. Up to date there is no comprehensive theory describing the anomalous temperature dependence of $|q_{ij}|$. Several possible mechanisms are usually considered (e.g. [8] and ref. therein). For CsTcO₄, the most relevant mechanisms are:

- (i) orientational change of the principal axes system of the ⁹⁹Tc EFG tensors, since $\partial \eta / \partial T \neq 0$; and
- (ii) a large negative pressure coefficient $(\partial v_Q/\partial P)_T$ in the Kushida-Benedek-Bloembergen theory [9].

133Cs NMR

The observed complicated ¹³³Cs NMR line shape for CsTcO₄ was considered to be a superposition of two partially overlapping multiplets from the first-order quadrupole coupling (Figure 4). Hence, there are two nonequivalent cesium positions in the lattice, Cs (1) and Cs (2). Figure 4 showns also, as an example, the specific points v_{sg} and v_{st} for these two magneti-

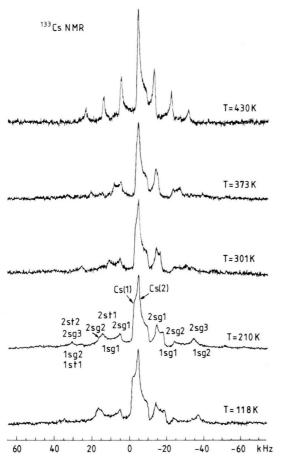


Fig. 4. 133 Cs NMR spectra (39.8 MHz) of polycrystalline CsTcO₄ at different temperatures; sweep range: spectral width = 500 kHz; number of scans = 100.

cally nonequivalent cesium positions at 210 K. The line shape analysis was carried out assuming a negligible value of η (< 0.05).

The estimations of the line intensity ratio, which where carried out by comparing the central components or satellites, have given evidence of a decrease of the Cs (1) site population with increasing temperature, while the population of the Cs (2) sites increases. At 430 K only the Cs (2) position is occupied. At 118 K the isotrope 133 Cs chemical shifts for the Cs (1) and Cs (2) positions are (-50 ± 20) ppm and (-120 ± 20) ppm, respectively, the Cs (2) site being characterized by a magnetic shielding anisotropy. Temperature increase caused practically no changes in the anisotropy parameters and the 133 Cs chemical shift for the Cs (2) position, while the signal of Cs (1) monotonously shifted to the high field side, so that at 430 K the

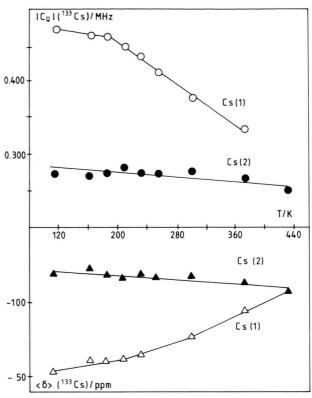


Fig. 5. Temperature dependences of the ^{133}Cs QCC (o, \bullet) and ^{133}Cs chemical shifts (a, \blacktriangle) for different cesium positions.

chemical shifts of both, Cs (1) and Cs (2), coincided (Figure 5). The magnetic shielding anisotropy at 430 K has the following parameters: $\sigma_1 = -85$; $\sigma_2 = -105$; $\sigma_3 = -230$, $\langle \delta \rangle^{\rm iso} = (-140 \pm 10)$ ppm.

Figure 5 shows the temperature dependence of the ¹³³Cs QCC's for the two positions of cesium nuclei. The ¹³³Cs QCC values differ from each other in magnitude as well as in temperature behaviour. The ¹³³Cs QCC of the Cs (1) nuclei linearly diminishes from 118 to 190 K with a coefficient

$$\frac{1}{v_Q^0} \cdot \frac{\Delta v_Q}{\Delta T} = -0.5 \cdot 10^{-4} \text{ K}^{-1},$$

where $v_Q^0 [Cs(1)] = 35.2 \text{ kHz}$ and $C_Q^0 [Cs(1)] = 0.49 \text{ MHz}.$

In the interval 190–200 K a break of $C_Q(T)$ takes place (Figure 5). In the temperature range 200–380 K a linear descent of $v_Q(T)$ with a coefficient $\Delta v_Q/\Delta T = -0.07 \text{ kHz K}^{-1}$ was observed.

The Cs (2) position is characterized by a linear decrease of $v_Q(^{133}\text{Cs})$ over the whole temperature inter-

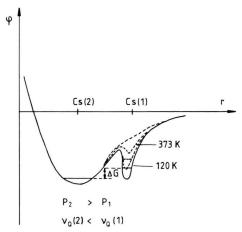


Fig. 6. Schematic drawing showing the temperature behaviour of the crystal potential, φ , at the cesium positions.

val (100-430 K) with a coefficient

$$\frac{1}{v_0^0} \cdot \frac{\Delta v_Q}{\Delta T} = -3.4 \cdot 10^{-4} \,\mathrm{K}^{-1},$$

where v_Q^0 [Cs (2)] = 20.85 kHz and C_Q^0 = 0.29 MHz. The results of ¹³³Cs NMR study lead to the follow-

ing conclusions:

(i) two crystallographically and magnetically nonequivalent cesium positions are present in the structure. The magnetic nonequivalence is manifested by different values of the 133Cs chemical shifts for Cs(1) and Cs(2), and the structural one by the different

¹³³Cs QCC values in Cs (1) and Cs (2) positions. The presence of two positions in the CsTcO₄ lattice is a result of a disordering of cesium ions within Pnma space group.

(ii) The population ratio of the Cs(1) and Cs(2) positions is dominated by the difference between the free energies of these states:

$$\frac{p_2}{p_1} = \exp\left(\frac{\Delta G}{R T}\right).$$

A crude estimations of line intensities ($\pm 40\%$) has given the following values of p_2/p_1 and ΔG :

$$T$$
, K
 118
 210
 301
 373

 p_2/p_1
 2
 4
 5
 6.5

 ΔG , kJ mol⁻¹
 0.68
 2.4
 4.0
 5.8

(iii) The origin of the cationic position splitting seems to be a double minimum potential, φ , of a crystal field in the vicinity of cesium sites. Some difference between the minimum depths follows from the estimations of ΔG values given above; a different potential steepness for the Cs (1) and Cs (2) positions is determined by the expressions

$$v_Q \sim \partial^2 \varphi / \partial r^2$$
, when $v_Q[Cs(2)] > v_Q[CS(1)]$.

With temperature growth a gradual transition from the double minimum potential to a single minimum potential takes place (Figure 6). This process is accompanied by a structural phase transition from orthorhombic with splitted cationic positions to tetragonal.

- [1] B. J. McDonald and G. J. Tyson, Acta Cryst. 15, 87 (1962). [2] G. Meyer and R. Hoppe, Z. anorg. allg. Chem. 420, 40
- [3] V. P. Tarasov, G. A. Kirakosyan, and M. A. Meladze, Tezisy vsesoyusnoi konferentsii "Spektroskopiia koordinationnych soedinenii", Krasnodar, 1990, p. 214. B. Kanallakopulos, J. Inorg. Nucl. Chem. **28**, 813 (1966).
- [5] V. P. Tarasov, S. A. Petrushin, V. I. Privalov, K. E. German, S. V. Kryuchkov, and Yu. A. Buslaev, Soviet J. Coord. Chem. 12, 713 (1986).
- [6] V. P. Tarasov, V. I. Privalov, K. E. German, and S. V. Kryutchkov, Abstr. of the III. International Symposium "Technetium and Rhenium in Chemistry and Nuclear
- Medicine", Padua, Italy, 1989, p. 321.

 [7] M. Wadsworth and P. W. France, J. Magn. Res. 51, 424 (1983).
- R. J. C. Brown, Z. Naturforsch. 45a, 449 (1990).
- T. Kushida, G. B. Benedek, and N. Bloembergen, Phys. Rev. 104, 1364 (1956).